Fast Decoding of Codes in the Rank, Subspace, and Sum-Rank Metric

نویسندگان

چکیده

We speed up existing decoding algorithms for three code classes in different metrics: interleaved Gabidulin codes the rank metric, lifted subspace and linearized Reed-Solomon sum-rank metric. The speed-ups are achieved by new that reduce cores of underlying computational problems decoders to one common tool: computing left right approximant bases matrices over skew polynomial rings. To accomplish this, we describe a skew-analogue PM-Basis algorithm ordinary polynomials. This captures bulk work multiplication polynomials, complexity benefit comes from performing this faster than classical quadratic complexity. various decoding-related interesting their own have further applications, particular parts several other foundational related remainder-evaluation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Decoding Algorithm for Rank Metric Codes

In this work we will present algorithms for decoding rank metric codes. First we will look at a new decoding algorithm for Gabidulin codes using the property of Dickson matrices corresponding to linearized polynomials. We will be using a Berlekamp-Massey-like algorithm in the process. We will show the difference between our and existing algorithms. Apart from being a new algorithm, it is also i...

متن کامل

Decoding of Block and Convolutional Codes in Rank Metric DISSERTATION

Rank-metric codes recently attract a lot of attention due to their possible application to network coding, cryptography, space-time coding and distributed storage. An optimal-cardinality algebraic code construction in rank metric was introduced some decades ago by Delsarte, Gabidulin and Roth. This Reed–Solomon-like code class is based on the evaluation of linearized polynomials and is nowadays...

متن کامل

Decoding of block and convolutional codes in rank metric

R ank-metric codes recently attract a lot of attention due to their possible application to network coding, cryptography, space-time coding and distributed storage. An optimal-cardinality algebraic code construction in rank metric was introduced some decades ago by Delsarte, Gabidulin and Roth. This Reed–Solomon-like code class is based on the evaluation of linearized polynomials and is nowaday...

متن کامل

Properties of subspace subcodes of optimum codes in rank metric

Maximum rank distance codes denoted MRD-codes are the equivalent in rank metric of MDS-codes. Given any integer $q$ power of a prime and any integer $n$ there is a family of MRD-codes of length $n$ over $\FF{q^n}$ having polynomial-time decoding algorithms. These codes can be seen as the analogs of Reed-Solomon codes (hereafter denoted RS-codes) for rank metric. In this paper their subspace sub...

متن کامل

Row reduction applied to decoding of rank-metric and subspace codes

We show that error and erasure decoding of `-Interleaved Gabidulin codes, as well as list-` decoding of Mahdavifar–Vardy codes can be solved by row reducing skew polynomial matrices. Inspired by row reduction of F[x] matrices, we develop a general and flexible approach of transforming matrices over skew polynomial rings into certain normal forms. We apply this to solve generalised shift registe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2021

ISSN: ['0018-9448', '1557-9654']

DOI: https://doi.org/10.1109/tit.2021.3067318